Law of large numbers for the possibilistic mean value

نویسنده

  • Pedro Terán
چکیده

A law of large numbers for the possibilistic mean value of a variable in a possibility space is presented. An example shows that the convergence in distribution (under a definition involving the possibilistic mean value) of the sample average to a variable with a certain distribution cannot be replaced, in general, by convergence either almost surely or in necessity. Even so, the usual presentation of the law of large numbers as a statement that holds ‘in necessity’ follows from this result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On possibilistic mean value and variance of fuzzy numbers

Dubois and Prade introduced the mean value of a fuzzy number as a closed interval bounded by the expectations calculated from its upper and lower distribution functions. In this paper introducing the notations of lower possibilistic and upper possibilistic mean values we definine the interval-valued possibilistic mean and investigate its relationship to the interval-valued probabilistic mean. W...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

On weighted possibilistic mean and variance of fuzzy numbers

Dubois and Prade defined an interval-valued expectation of fuzzy numbers, viewing them as consonant random sets. Carlsson and Fullér defined an interval-valued mean value of fuzzy numbers, viewing them as possibility distributions. In this paper we shall introduce the notation of weighted interval-valued possibilistic mean value of fuzzy numbers and investigate its relationship to the interval-...

متن کامل

Possibilistic Correlation: Illustration, Ex- Planation and Computation of Some Im- Portant Cases

In 1987 Dubois and Prade defined an interval-valued expectation of fuzzy numbers, viewing them as consonant random sets. In 2001 Carlsson and Fullér defined an interval-valued mean value of fuzzy numbers, viewing them as possibility distributions, and they introduced the notation of crisp possibilistic mean value and crisp possibilistic variance of continuous possibility distributions, which ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 245  شماره 

صفحات  -

تاریخ انتشار 2014